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Fig. 1. Test procedure

In this supplementary material, we first show results on extra synthetic and
real test sequences (Section 1). We also show that the method deals with viola-
tions of our assumptions; for example, non-Lambertian surfaces (Section 2). We
perform a sensitivity analysis and find that the results are quite insensitive to
the parameter settings (Section 3). We explain the error metrics used to compare
our estimated intrinsic video to ground truth (Section 4). We next provide more
details on our optimization scheme (Section 5). We then depict more examples
of non-local weights that are important to improve shading estimation (Section
6). Finally, we explain how our input data was created, and show the full results
in addition to optical flow, occlusion and boundary intrinsic images for each
example (Section 7).

We overview our test procedure in Fig. 1: The input is a video sequence and
optical flow estimated from the sequence. We used the Classic+NL method [5]
with its default settings to compute the optical flow. Occlusion maps and motion
boundary maps detected from the flow are used in our coarse-to-fine decompo-
sition algorithm. The output is the estimated albedo and shading sequences.
These sequences of optical flow, occlusion, motion boundaries, albedo and shad-
ing define intrinsic video. We measure an LMSE (local mean squared error) [3]
of the reconstructed albedo and shading images, which is a standard error mea-
sure in the field. We also introduce a new measure of temporal incoherence,
which assesses how consistent the albedo is over time. Details of the LMSE and
incoherence metrics are given below in Sections 4.1 and 4.2, respectively.
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Unless otherwise mentioned, all equations, figures and references indicate
those in this document. Table 1 summarizes the abbreviations of different meth-
ods used in Figures 4-8 of the main paper.

Table 1. Abbreviations used in the main paper

Indicator Meaning

IV w/o Flow Our method without temporal coherence terms
IV Our method using optical flow estimated by Classic+NL
IV w/ GT Flow Our method using ground truth optical flow
CRET Baseline color-Retinex algorithm in [3]
GS More advanced Retinex-based method in [2]

1 Extra Synthetic and Real Examples

In Figures 2 and 3, we illustrate another synthetic example and another real
example that were omitted from the main paper due to limited space. The re-
sults are consistent with those in the main paper. As shown in (g)-(r) of the
figures, both of CRET and GS put lots of high-frequency albedo information
into the shading image, and the albedo is overall inconsistent between frames.
In contrast, our albedo image retains most details and the shading is piecewise
smooth, mostly obeying object boundaries. Our recovered albedo is relatively
more constant in time. As shown in (c)-(f) of the figures, our albedo produces
less noisy flow fields, suggesting that our albedo has better temporal coherence
than the others.

2 Violating our Assumptions

We modified our synthetic sequences by adding a specular component to some
materials, and tested our method on the modified sequences. Our method still
produced fairly good results as shown in Fig. 4. Shading is as accurate as before
and albedo absorbs the specularities. Coherence of the reconstructed albedo se-
quence is clearly enhanced from the original images. Note that our real sequences
already contain some specularities and shadows. The results on full frames are
also shown in Figures 34, 35 and 36 .

3 Parameter Sensitivity

Our algorithm is relatively insensitive to significant variations in the parameters
λD, λTA

, λTS
, λSs

, λScpl
, λSm

and α. We perturbed each of these parameters
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Fig. 2. Synthetic example in which the camera zooms in from the fourth frame, and
illumination variation is more drastic than in the first synthetic example (Fig. 4 in
the main paper). (a),(b) Two frames from the sequence. (c)-(e) Flow from the albedo
estimated from our method (IV), CRET and GS. (f) Flow from the original images.
(g)-(l) Albedo from IV, CRET and GS. (m)-(r) Shading from IV, CRET and GS.
(s)-(w) Ground truth albedo, shading and flow.

up to 20% from the default setting, while fixing the other parameters as their
default values. We used our three synthetic sequences and ground truth flow as
input, and applied our method with the perturbed parameter values. For each
perturbed parameter value, we measured an LMSE averaged over the three se-
quences and plotted a graph in Fig. 5. In the graph, the horizontal scale indicates
the amount of perturbation from the default value (noted as 0%) of each param-
eter. The vertical scale has the same order of magnitude as that used in Fig. 6
(left) of the main paper. It shows no significant error variation. This suggests
that our method is robust to changes in the parameter settings.

4 Error Metrics

In this section, we provide more details on error metrics used to compare our
estimated intrinsic video to ground truth.
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IV CRET GS

Fig. 3. Real example in which we introduced slowly varying illumination by mounting
a continuous light source on top of the moving camera. (a),(b) Two frames from the
sequence. (c)-(e) Flow from the albedo estimated from our method (IV), CRET and
GS. (f) Flow from the original images. (g)-(l) Albedo from IV, CRET and GS. (m)-(r)
Shading from IV, CRET and GS.

4.1 LMSE metric

The LMSE metric [3] measures an error for both estimated albedo and shading
images compared to their ground truth at each frame. This metric is locally
scale-invariant, and defined as

LMSE(aGT, aEST, sGT, sEST) =
1

2

LMSEk(aGT, aEST)

LMSEk(aGT, 0)
+

1

2

LMSEk(sGT, sEST)

LMSEk(sGT, 0)
, (1)

LMSEk(xGT, xEST) =
∑

w∈Wk

‖xGT
w − α̂xEST

w ‖2 (2)

where α̂ = argminα ‖xGT
w −αxEST

w ‖2. Here, Wk is a set of k×k windows spaced
in steps of k/2 (where k = 20), xw is a vectorized window in the set Wk for
image x. A superscript GT or EST indicates that the variable comes from the
ground truth image or the estimated image, respectively. Note that the albedo
image is composed of RGB channels; for each frame, we apply this error metric
individually to each RGB channel and take the mean of those three errors. We
average this LMSE over all frames and then average this over all three synthetic
examples.

4.2 Incoherence metric

Optical flow methods typically assume brightness constancy, which is violated if
illumination in the sequence is inconsistent over time. If one has accurate albedo
estimation at every frame then albedo constancy should hold, making optical flow
easy to estimate from the albedo. Since violations of constancy increase errors in
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(a) Input video (b) IV (c) Original

(d) Estimated albedo (e) Estimated shading

Modified sequence in Fig. 4 of the paper

(a) Input video (b) IV (c) Original

(d) Estimated albedo (e) Estimated shading

Modified sequence in Fig. 5 of the paper

(a) Input video (b) IV (c) Original

(d) Estimated albedo (e) Estimated shading

Modified sequence in Fig. 2

Fig. 4. Adding violations of our assumptions. (a) Three frames from a sequence mod-
ified by adding a specular component to some materials in the original sequence. (b)
Flow from the albedo estimated from our method. (c) Flow from the original images.
(d) Estimated albedo. (e) Estimated shading.

optical flow, the optical flow error provides a measure of how constant a sequence
is in time. Note that while we assume albedo in the world is constant, in a video
sequence the albedo values are moving and this movement is described by the
optical flow. Evaluating the optical flow accuracy has the nice property of being
directly relevant to a task. If intrinsic video estimation can improve optical flow
accuracy, then this could be immediately beneficial to optical flow algorithms.

The implementation of the Classic+NL method has a setting to use the stan-
dard brightness constancy assumption rather than a more complex model assum-
ing constancy of a texture decomposition. We apply Classic+NL with brightness
instead of texture decomposition to each of the sequences reconstructed from our
method, previous methods, and the original images. We then compute an error
of each flow field compared to the ground truth flow using EPE (averaged end-
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Fig. 5. Parameter sensitivity. We perturbed each of λD, λTA , λTS , λSs , λScpl , λSm and
α from their default values and measured LMSEs averaged over the three synthetic
sequences. The horizontal scale indicates the amount of perturbation from the default
parameter value. The graph shows no significant error variation.

point-error) [1] defined as follows:

EPE(uGT,uEST) =
1

N

∑
x

√
‖uGT(x)− uEST(x)‖2, (3)

where N is the number of pixels, x is pixel location, u(x) is an optical flow
vector at x, uGT is ground truth optical flow, and uEST is estimated optical
flow. This provides a measure of how temporally coherent the albedo sequence
is; a more coherent sequence produce lower EPE. Note that our input optical
flow, computed with the Classic+NL method using its default settings, is not a
part of this incoherence measure since it uses a different texture-decomposition
constancy assumption. We average this EPE over all frames and then average it
over the three synthetic examples.

We illustrate the flow from this incoherence measure in (c)-(f) of Figures 4, 5,
7 and 8 of the main paper as well as Figures 2 and 3. Each flow field is visualized
by using the standard color coding for its direction and magnitude. This flow
image provides an intuitive visualization of coherence, since an albedo sequence
with better temporal coherence will produce flow images that look closer to the
images of ground truth flow.

5 Optimization Details

We give more details on our optimization scheme here. To minimize our objective
function, Eq. (2) of the main paper, we adopt a coarse to fine pyramid-based
approach and incremental update scheme similar in spirit to the flow estimation
method in [5].

Coarse to find approach. We use a 3-level Gaussian pyramid with a scale
factor of 2 for all our video input (the resolution is either 320 × 240 or 320 ×
214). At the coarsest pyramid level, we start by setting all unknowns to 0. At
each pyramid level, we incrementally update the unknowns, rather than directly
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estimate the variables, as explained below. At each finer level in the pyramid,
the shading values estimated at a coarser level are up-sampled, then the log
difference from input video frame is taken to initialize the albedo values at that
level.

Incremental update. At each pyramid level, the optimization problem in
Eq. (2) of the main paper is solved repeatedly but incrementally. This scheme
was proven to be a best practice for flow estimation in [5]. The variables at each
iteration k are defined as

Akt = Ak−1t + Âkt and Skt = Sk−1t + Ŝkt ,

where Ak−1t and Sk−1t are the albedo and shading estimated at the last iteration,
k − 1, Âkt and Ŝkt are incremental variables to be estimated at current iteration
k. Then, the objective function to minimize is now

argmin
{Âk

t ,Ŝ
k
t ,S̃

k
t }

∑
t

fD(Akt , S
k
t |It) + fTA

(Akt+1, A
k
t |ut) + fTS

(Akt+1, A
k
t |ut)

+fA(Akt ) + f ′S(Skt , S̃
k
t ), (4)

where f ′S is the modified spatial shading term with the coupling variable S̃kt in
Eq. (13) of the main paper. In practice, we alternate between the estimation of
{Akt , Skt } and S̃kt while encouraging the solutions to be similar with the quadratic
coupling term. We iterate the incremental update 10 times.

6 Non-local Weights

The non-local term in our spatial shading prior (Eq. (9) in the main paper) assists
spatial shading estimation, by preventing smoothing across motion boundaries.
The non-local weights (Eq. (10) in the main paper) of the prior prevent spatial
smoothing across motion boundaries, which are extracted from the optical flow.
We show more examples on the non-local weights in Fig. 6.

7 Datasets and Full Results

Since our problem deals with moving camera/objects and varying illumination in
the scene, none of existing datasets exactly fit in our requirements. We therefore
generated three synthetic video sequences and three real video sequences, by
varying different aspects of the motion and illumination.

7.1 Synthetic examples

Each of our synthetic video sequences includes ground truth values of albedo,
shading, optical flow and occlusion. In order to obtain physically correct pixel
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(a)

(b)

Fig. 6. Examples on non-local weights (Eq. (10) in the main paper). (a),(b) The weights
computed from optical flow of the real sequence in Fig. 7 of the main paper and another
real sequence in Fig. 3, respectively. In each of (a) and (b), the left image shows the
first video frame, small boxes in the middle visualize 15× 15 weights corresponding to
the regions marked on the left image, and the right image shows motion boundaries
detected from the optical flow, visualized as 1−wbnd

ut
. (The left image in (b) is gamma-

corrected for better visual presentation.)

values for the albedo and shading images, we used 3D rendering software Maya R©

with the Mental Ray R© renderer. A Lambertian shader was assigned to all sur-
faces. We placed a white ambient light source and a white directional light source
in the scene, where the directional source slowly but randomly changes its di-
rection throughout the frames.

The ground truth optical flow and occlusion were computed as follows: At
each frame, we cast a ray from each pixel to the scene surfaces and find the
intersection point. In the next frame, we get the pixel location projected back
from to the intersection point. Finally, we calculate the different between the two
pixel locations. If the back-projected ray from the intersection point is blocked
by other surfaces or goes beyond the image plane in the next frame, we mark
the pixel in our occlusion maps. This is similar to the implementation in [4] but
we extended it to deal with moving objects as well.

For our first synthetic example, its input data and ground truth values are
shown in Fig. 7. Occlusion and motion boundary maps detected from optical
flow are shown in Fig. 8. Note that these are three types of intrinsic video. Two
other types of intrinsic video are the sequences of albedo and shading, and their
reconstruction from our method is compared with those from previous methods
in Fig. 9. Fig. 10 shows that our temporal coherence terms clearly improve albedo
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and shading estimation. Fig. 11 visually compares coherence of our reconstructed
albedo with that from previous methods. Similarly, the second synthetic example
is shown in Figures 12, 13, 14, 15, and 16, and the third synthetic example is
shown in Figures 17, 18, 19, 20, and 21. Note that the CRET [3] and GS [2]
methods are applied to each frame of the video independently. When our method
is applied without temporal coherence terms, the spatial shading prior in Eq. (9)
of the main paper uses only the local term.

Each example involves a different type of motion and illumination variation
(see captions in Figures 7, 12, 17 for details). Overall, both of CRET and GS
put too much high-frequency albedo information into the shading image, and
the albedo changes significantly from frame to frame. In contrast, our albedo
sequence retains most details and the shading sequence is piecewise smooth,
mostly obeying object boundaries. Our albedo sequence is more consistent in
time than that from previous methods, and it could be even more consistent
than the original video. This suggests that intrinsic video may be useful to
improve optical flow estimation.

7.2 Real examples

We captured real video sequences by serially taking photographs using a com-
mercial DSLR camera (Nikon R© D600) with a flash light or continuous lights.
Our real examples involve different types of motion and illumination variation,
corresponding to those in the synthetic examples.

Input data for our first real example is shown in Fig. 22, along with the optical
flow, occlusion and motion boundary intrinsic images. The reconstructed albedo
and shading sequences from ours and previous methods are compared in Fig. 23.
Fig. 24 shows that the our temporal coherence terms clearly improve albedo and
shading estimation. Fig. 25 visually compares coherence of our reconstructed
albedo with that from previous methods. Similarly, the second real example is
shown in Figures 26, 27, 28, and 29, and the third real example is shown in
Figures 30, 31, 32, and 33.

Each example involves a different type of motion and illumination variation
(see captions in Figures 22, 26, 30 for details). The results are consistent with
those on synthetic sequences. Visually, our method significantly outperforms the
previous methods. The shading from previous methods carries a lot of albedo
information, but our shading sequence has few albedo details and well captures
the overall shape of the scene. Previous methods sometime almost completely
miss the shape of the scene in their shading images, and the albedo is overall
inconsistent between frames. Our albedo is very consistent in time and keeps
most details. Our shading well captures overall shape of the scene and presents
very few albedo details. Our method produces a lot cleaner but less noisy flow
fields than previous methods; coherence of our albedo could be even better than
that of the original video.
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Input video frames

(a)

Ground truth albedo

Ground truth shading

Ground truth flow

Ground truth occlusion

(b)

Fig. 7. (a) Input video (8 frames; 320× 240): in this example, a camera is freely mov-
ing and illumination varies significantly over time. (b) Ground truth albedo, shading,
optical flow, and occlusion for the input video.
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(a) Estimated optical flow (u)

(b) Occlusion maps detected from (a)

(c) Boundary maps detected from (a)

(d) Occlusion maps detected from GT flow

(e) Boundary maps detected from GT flow

Fig. 8. (a) Optical flow computed from the video in Fig. 7(a) using default Clas-
sic+NL [5]. (b) Occlusion maps (wocc

u ) detected from (a). (c) Motion boundary maps
(wbnd

u ) detected from (a). (d) Occlusion maps (wocc
uGT) detected from ground truth flow.

(e) Motion boundary maps (wbnd
uGT) detected from ground truth flow.
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Albedo from IV

Albedo from CRET

Albedo from GS

Ground truth albedo

(a)

Shading from IV

Shading from CRET

Shading from GS

Ground truth shading

(b)

Fig. 9. (a) Albedo estimated by our method (IV), CRET [3], GS [2], and the ground
truth albedo. (b) Shading estimated by IV, CRET, GS, and the ground truth shading.
Both of CRET and GS put too much high-frequency albedo information into the shad-
ing image. Also the albedo changes significantly from frame to frame. In contrast, our
albedo image retains most details and the shading is piecewise smooth, mostly obeying
object boundaries.



Intrinsic Video 13

Results without temporal terms

IV: Results with temporal terms (using estimated flow)

Results with temporal terms (using ground truth flow)

Fig. 10. Albedo and shading with and without our temporal terms. We also compare
the results of using the estimated flow versus using ground truth flow. The compar-
ison shows that our temporal terms clearly improve albedo and shading estimation,
especially the shading estimation. Second, temporal coherence provided by the com-
puted optical flow is good enough to produce results similar to those estimated with
the ground truth optical flow.
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Flow from ground truth albedo

Flow from IV albedo

Flow from original images

Flow from CRET albedo

Flow from GS albedo

Fig. 11. Flow from ground truth albedo, IV (our method) albedo, original images,
CRET albedo, and GS albedo. Our albedo is clearly more consistent than the albedo
sequence estimated by previous methods. In addition, note that our albedo sequence
is more consistent than the original video.
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Input video frames

(a)

Ground truth albedo

Ground truth shading

Ground truth flow

Ground truth occlusion

(b)

Fig. 12. (a) Input video (8 frames; 320× 240): in this example, all objects in the scene
are moving while the camera translates. Illumination does not change much in this
case. (b) Ground truth albedo, shading, optical flow, and occlusion for the input video.
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(a) Estimated optical flow (u)

(b) Occlusion maps detected from (a)

(c) Boundary maps detected from (a)

(d) Occlusion maps detected from GT flow

(e) Boundary maps detected from GT flow

Fig. 13. (a) Optical flow computed from the video in Fig. 12(a) using default Clas-
sic+NL [5]. (b) Occlusion maps (wocc

u ) detected from (a). (c) Motion boundary maps
(wbnd

u ) detected from (a). (d) Occlusion maps (wocc
uGT) detected from ground truth flow.

(e) Motion boundary maps (wbnd
uGT) detected from ground truth flow.
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Albedo from IV

Albedo from CRET

Albedo from GS

Ground truth albedo

(a)

Shading from IV

Shading from CRET

Shading from GS

Ground truth shading

(b)

Fig. 14. (a) Albedo estimated by our method (IV), CRET [3], GS [2], and the ground
truth albedo. (b) Shading estimated by IV, CRET, GS, and the ground truth shading.
The albedo estimated by CRET or NIPS misses lots of details, which are carried in the
shading incorrectly. In contrast, our albedo keeps most details and its shading presents
very few albedo details in it.
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Results without temporal terms

IV: Results with temporal terms (using estimated flow)

Results with temporal terms (using ground truth flow)

Fig. 15. Albedo and shading with and without our temporal terms. We also compare
the results of using the estimated flow versus using ground truth flow. This comparison
shows that our temporal coherence terms improve albedo and shading estimation. In
addition, temporal coherence provided by the computed optical flow is good enough to
produce results similar to those estimated with the ground truth optical flow.
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Flow from ground truth albedo

Flow from IV albedo

Flow from original images

Flow from CRET albedo

Flow from GS albedo

Fig. 16. Flow from ground truth albedo, IV (our method) albedo, original images,
CRET albedo, and GS albedo. Our albedo is more consistent than that from previous
methods. The flow fields from our albedo are cleaner than those from the original video,
and even close to those from ground truth albedo.



20 N. Kong, P. V. Gehler, M. J. Black

Input video frames

(a)

Ground truth albedo

Ground truth shading

Ground truth flow

Ground truth occlusion

(b)

Fig. 17. (a) Input video (9 frames; 320 × 240): in this example, the camera zooms in
from the fourth frame, and illumination variation is more drastic than in the previous
example. (b) Ground truth albedo, shading, optical flow, and occlusion for the input
video.
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(a) Estimated optical flow (u)

(b) Occlusion maps detected from (a)

(c) Boundary maps detected from (a)

(d) Occlusion maps detected from GT flow

(e) Boundary maps detected from GT flow

Fig. 18. (a) Optical flow computed from the video in Fig. 17(a) using default Clas-
sic+NL [5]. (b) Occlusion maps (wocc

u ) detected from (a). (c) Motion boundary maps
(wbnd

u ) detected from (a). (d) Occlusion maps (wocc
uGT) detected from ground truth flow.

(e) Motion boundary maps (wbnd
uGT) detected from ground truth flow. In this case, esti-

mated optical flow is rather noisy and the motion boundary maps have been affected
by that. However, accurate flow consistently yields clean maps as in (d) and (e). Our
method using (b) and (c) still produces high-quality albedo and shading as shown
in Fig. 19.
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Albedo from IV

Albedo from CRET

Albedo from GS

Ground truth albedo

(a)

Shading from IV

Shading from CRET

Shading from GS

Ground truth shading

(b)

Fig. 19. (a) Albedo estimated by our method (IV), CRET [3], GS [2], and the ground
truth albedo. (b) Shading estimated by IV, CRET, GS, and the ground truth shading.
The albedo estimated by previous methods misses many details and their shading
images contain lots of albedo information. Our shading presents very few albedo details
and is piecewise smooth while mostly obeying object boundaries.
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Results without temporal terms

IV: Results with temporal terms (using estimated flow)

Results with temporal terms (using ground truth flow)

Fig. 20. Albedo and shading with and without our temporal terms. We also compare
the results of using the estimated flow versus using ground truth flow. These results
show that our temporal coherence terms improve albedo and shading estimation. In
particular, temporal coherence improves the precision of the shading boundaries be-
tween surfaces. In addition, temporal coherence provided by the computed optical flow
is good enough to produce results similar to those estimated with the ground truth
optical flow.
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Flow from ground truth albedo

Flow from IV albedo

Flow from original images

Flow from CRET albedo

Flow from GS albedo

Fig. 21. Flow from ground truth albedo, IV (our method) albedo, original images,
CRET albedo, and GS albedo. Our albedo sequence is clearly more consistent than
the albedo sequence estimated by previous methods. In addition, note that our albedo
sequence is more consistent than the original video.
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(a) Input video frames

(b) Estimated optical flow (u)

(c) Detected occlusion maps (wocc
u )

(d) Detected motion boundary maps (wbnd
u )

Fig. 22. (a) Input video (7 frames; 320×214): in this example, the input video captures
a static outdoor scene with a freely moving camera. A flashlight on top of the camera
was used to vary illumination over time fairly drastically. (b) Optical flow computed
from the video using default Classic+NL [5]. (c) Occlusion maps (wocc

u ) detected from
(b). (d) Motion boundary maps (wbnd

u ) detected from (b).
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Albedo from IV

Albedo from CRET

Albedo from GS

(a)

Shading from IV

Shading from CRET

Shading from GS

(b)

Fig. 23. (a) Albedo estimated by our method (IV), CRET [3] and GS [2]. (b) Shad-
ing estimated by IV, CRET and GS. Our method significantly outperforms previous
methods. The shading from previous methods carries a lot of albedo information. In
contrast, our shading sequence has few albedo details and well captures the overall
shape of the scene, mostly obeying object boundaries.
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Results without temporal terms

Results with temporal terms

Fig. 24. Albedo and shading estimated without temporal terms, and with temporal
terms (using estimated flow). Here we see that using the temporal constraints on albedo
and shading is important to getting sharper shading boundaries. These results show
that our temporal coherence terms improve albedo and shading estimation.

Flow from IV albedo

Flow from original images

Flow from CRET albedo

Flow from GS albedo

Fig. 25. Flow from IV (our method) albedo, original images, CRET albedo, and GS
albedo as coherence visualization. While there is no ground true flow for this sequence,
our reconstructed albedo produces less noisy flow fields, suggesting that our albedo has
better temporal coherence than the others.
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(a) Input video frames

(b) Estimated optical flow (u)

(c) Detected occlusion maps (wocc
u )

(d) Detected motion boundary maps (wbnd
u )

Fig. 26. Input video (8 frames; 320 × 214): in this example, all objects continuously
move but the background stays still. The camera and light sources are fixed. (b) Optical
flow computed from the video using default Classic+NL [5]. (c) Occlusion maps (wocc

u )
detected from (b). (d) Motion boundary maps (wbnd

u ) detected from (b).
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Albedo from IV

Albedo from CRET

Albedo from GS

(a)

Shading from IV

Shading from CRET

Shading from GS

(b)

Fig. 27. (a) Albedo estimated by our method (IV), CRET [3] and GS [2]. (b) Shading
estimated by IV, CRET and GS. The shading from CRET almost completely misses
the shape of the scene, and the albedo from GS is inconsistent between frames (see the
color of the cube). Our albedo is very consistent in time and our shading well captures
overall shape of the scene.
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Results without temporal terms

Results with temporal terms

Fig. 28. Albedo and shading estimated without temporal terms, and with temporal
terms (using estimated flow). Here we see that using the temporal constraints on albedo
and shading is important to getting sharper shading boundaries. These results show
that our temporal coherence terms improve albedo and shading estimation.

Flow from IV albedo

Flow from original images

Flow from CRET albedo

Flow from GS albedo

Fig. 29. Flow from IV (our method) albedo, original images, CRET albedo, and GS
albedo as coherence visualization. Our albedo sequence is more coherent than the
albedo sequence estimated by previous methods. In this case, since the illumination
did not change, the original video is as coherent as our albedo sequence.
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(a) Input video frames

(b) Estimated optical flow (u)

(c) Detected occlusion maps (wocc
u )

(d) Detected motion boundary maps (wbnd
u )

Fig. 30. Input video (8 frames; 320×214): in this example, we introduced slowly varying
illumination by mounting a continuous light source on top of the moving camera. (b)
Optical flow computed from the video using default Classic+NL [5]. (c) Occlusion maps
(wocc

u ) detected from (b). (d) Motion boundary maps (wbnd
u ) detected from (b).
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Albedo from IV

Albedo from CRET

Albedo from GS

(a)

Shading from IV

Shading from CRET

Shading from GS

(b)

Fig. 31. (a) Albedo estimated by our method (IV), CRET [3] and GS [2]. (b) Shading
estimated by IV, CRET and GS. The results are consistent with those on synthetic
sequences. Our method again significantly outperforms previous ones. The shading
from CRET almost completely misses the shape of the scene, and the albedo from GS
is inconsistent between frames. On the other hand, our method produced favorable
decomposition of albedo and shading even in this challenging example.
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Results without temporal terms

Results with temporal terms

Fig. 32. Albedo and shading estimated without temporal terms, and with temporal
terms (using estimated flow). Results are good even without the temporal terms, but
the green block is almost missing in the shading images. With the temporal terms, the
shading is improved to capture the shape of the block. These results show that our
temporal coherence terms improve albedo and shading estimation.

Flow from IV albedo

Flow from original images

Flow from CRET albedo

Flow from GS albedo

Fig. 33. Flow from IV (our method) albedo, original images, CRET albedo, and GS
albedo as coherence visualization. The albedo sequence estimated by the previous meth-
ods is less coherent than that of ours. The input video is already quite consistent, but
our albedo is even more consistent, especially around the top of the cube.
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1

(a) Input video frames

(b) Estimated albedo

(c) Estimated shading

(d) Flow from (b)

(e) Flow from (a)

Fig. 34. Modified synthetic example in Fig. 7 by adding a specular component to some
materials. (a) Input video (8 frames; 320× 240). (b) Albedo estimated by our method
(IV). (c) Shading estimated by IV. (d) Flow from (b) as coherence visualization. (e)
Flow from (a) as coherence visualization.



Intrinsic Video 35
1

(a) Input video frames

(b) Estimated albedo

(c) Estimated shading

(d) Flow from (b)

(e) Flow from (a)

Fig. 35. Modfied synthetic example in Fig. 12 by adding a specular component to some
materials. (a) Input video (8 frames; 320× 240). (b) Albedo estimated by our method
(IV). (c) Shading estimated by IV. (d) Flow from (b) as coherence visualization. (e)
Flow from (a) as coherence visualization.
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1

(a) Input video frames

(b) Estimated albedo

(c) Estimated shading

(d) Flow from (b)

(e) Flow from (a)

Fig. 36. Modified synthetic example in Fig. 17 by adding a specular component to some
materials. (a) Input video (9 frames; 320× 240). (b) Albedo estimated by our method
(IV). (c) Shading estimated by IV. (d) Flow from (b) as coherence visualization. (e)
Flow from (a) as coherence visualization.
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