

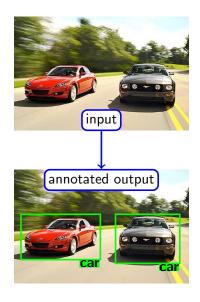
Branch&Rank: Efficient, Non-Linear Object Detection

Alain D. Lehmann, Peter V. Gehler, and Luc Van Gool

Computer Vision Laboratory, ETH Zurich, Switzerland

30 August, 2011

Detection means to localise and categorise objects

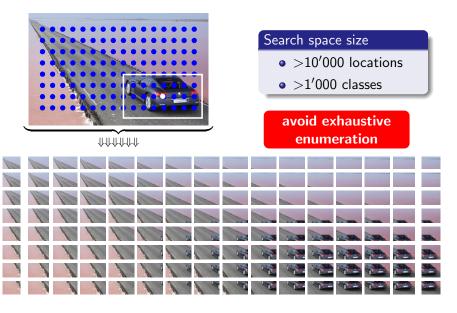


Appearance variations make it difficult

- intra-class variations
- different views/poses
- illumination changes
- occlusions, etc.

sophisticated
expensive
models

Localise objects among thousands of hypotheses



Efficient detection by ranking sub-images

Runtime = (classifier cost) \times (#calls)

- reduce cost: cascades [Viola et al. 04, Vedaldi et al. 09]
 - exhaustive search → not scalable
- ► reduce calls: branch&bound [Lampert et al. 08, Lehmann et al. 09]
 - bounds not tight enough → not effective

Ranking: "learn the bound"

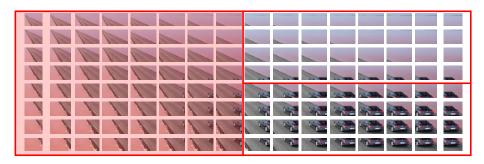
- branch, but not bound
- ▶ often <100 classifier calls →non-linear SVMs
- classification for detection

Outline

- Detection: best-first search
- Training: ranking hypothesis sets
- Multi-tasks aspects
- Results and conclusion

- exploit correlations
- split promising sets

- exploit correlations
- split promising sets



- exploit correlations
- split promising sets

- exploit correlations
- split promising sets

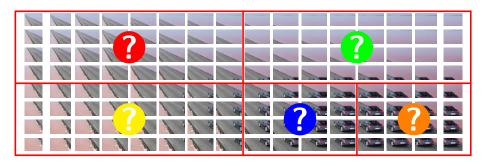
- exploit correlations
- split promising sets

- exploit correlations
- split promising sets

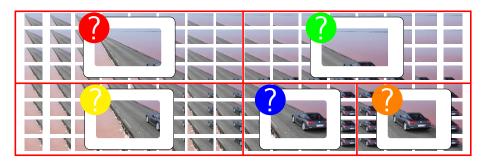
- exploit correlations
- split promising sets

- exploit correlations
- split promising sets

- exploit correlations
- split promising sets



- exploit correlations
- split promising sets



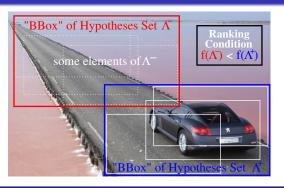
Sets of hypothesis

- exploit correlations
- split promising sets
- correspond to subimages

Ranking function f prioritises

supersedes upper bounds

Training with sets for increased efficiency



Structured SVM ranking [Tsochantaridis et al. 04, Blaschko et al. 08]

$$\min_{w,\xi_i \ge 0} \|w\|^2 + C \sum_i \xi_i$$

$$f(\Lambda_i^+) - f(\Lambda^-) \ge \Delta(\Lambda^-) - \xi_i$$

with
$$f(\Lambda) = \langle w, \phi(\Lambda) \rangle$$

- bag-of-words descriptor $\phi(\Lambda)$
- kernelize with RBF- χ^2 kernel
- $ightharpoonup \Lambda^+$: generate with oracle
- Λ⁻: delayed constraint generation

From image classification to object categorisation

Large sets

- object somewhere
- image classification

Small sets

- object centred
- object categorisation

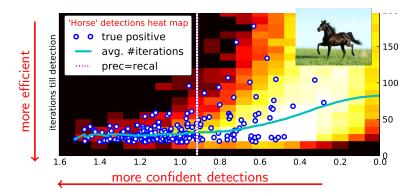
Task-adapted ranking

$$f(\Lambda) = \langle w_{q(\Lambda)}, \phi(\Lambda) \rangle$$

- ▶ task mapping $q(\Lambda)$
- leverage set information

- exploit context
- improved AP by $\approx 10\%$

Branch&rank detects in often <50 iterations

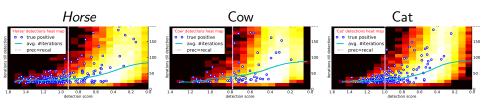


Dataset: PASCAL VOC 2007 (Horses) [Everingham et al., 2007]

- non-linear RBF- χ^2 SVMs
- no cascade approximations

costly classifier feasible

More results



	branch&rank [Lehmann <i>et al.</i> 2011]	part-based detector [Felzenszwalb <i>et al.</i> 2008]	best in challenge [Everingham <i>et al.</i> 2007]	
Horse	36.8%	30.1%	33.5%	better
Cow	10.8%	16.5%	14.0%	worse
Cat	17.6%	11.0%	24.0%	in-between

Future work

- combine multiple features
- use task-adapted features

Conclusion

Branch&rank is efficient

- less than 100 classifier calls
- non-linear SVMs feasible

Process hypothesis sets

- during detection and training
- "learn the bound"

Multiple task

combine classification and detection

