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Abstract

Direct prediction of 3D body pose and shape remains
a challenge even for highly parameterized deep learning
models. Mapping from the 2D image space to the predic-
tion space is difficult: perspective ambiguities make the
loss function noisy and training data is scarce. In this
paper, we propose a novel approach (Neural Body Fitting
(NBF)). It integrates a statistical body model within a CNN,
leveraging reliable bottom-up semantic body part segmen-
tation and robust top-down body model constraints. NBF
is fully differentiable and can be trained using 2D and 3D
annotations. In detailed experiments, we analyze how the
components of our model affect performance, especially the
use of part segmentations as an explicit intermediate repre-
sentation, and present a robust, efficiently trainable frame-
work for 3D human pose estimation from 2D images with
competitive results on standard benchmarks. Code will be
made available at http://github.com/mohomran/
neural_body_fitting

1. Introduction
Much research effort has been successfully directed to-

wards predicting 3D keypoints and stick-figure representa-
tions from images of people. Here, we consider the more
challenging problem of estimating the parameters of a de-
tailed statistical human body model from a single image.

We tackle this problem by incorporating a model of the
human body into a deep learning architecture, which has
several advantages. First, the model incorporates limb ori-
entations and shape, which are required for many applica-
tions such as character animation, biomechanics and virtual
reality. Second, anthropomorphic constraints are automati-
cally satisfied – for example limb proportions and symme-
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try. Third, the 3D model output is one step closer to a faith-
ful 3D reconstruction of people in images.

Traditional model-based approaches typically optimize
an objective function that measures how well the model fits
the image observations – for example, 2D keypoints [6, 24].
These methods do not require paired 3D training data (im-
ages with 3D pose), but only work well when initialized
close to the solution. By contrast, initialization is not re-
quired in forward prediction models, such as CNNs that di-
rectly predict 3D keypoints. However many images with 3D
pose annotations are required, which are difficult to obtain,
unlike images with 2D pose annotations.

Therefore, like us, a few recent works have proposed hy-
brid CNN architectures that are trained using model-based
loss functions [56, 62, 22, 38]. Specifically, from an im-
age, a CNN predicts the parameters of the SMPL 3D body
model [28], and the model is re-projected onto the image
to evaluate the loss function in 2D space. Consequently,
2D pose annotations can be used to train such architectures.
While these hybrid approaches share similarities, they all
differ in essential design choices, such as the amount of 3D
vs 2D annotations for supervision and the input representa-
tion used to lift to 3D.

To analyze the importance of such components, we intro-
duce Neural Body Fitting (NBF), a framework designed to
provide fine-grained control over all parts of the body fitting
process. NBF is a hybrid architecture that integrates a sta-
tistical body model within a CNN. From an RGB image or a
semantic segmentation of the image, NBF directly predicts
the parameters of the model; those parameters are passed
to SMPL to produce a 3D mesh; the joints of the 3D mesh
are then projected to the image closing the loop. Hence,
NBF admits both full 3D supervision (in the model or 3D
Euclidean space) and weak 2D supervision (if images with
only 2D annotations are available). NBF combines the ad-
vantages of direct bottom-up methods and top-down meth-
ods. It requires neither initialization nor large amounts of
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Figure 1: Given a single 2D image of a person, we predict a semantic body part segmentation. This part segmentation is
represented as a color-coded map and used to predict the parameters of a 3D body model.

3D training data.

One key question we address with our study is whether to
use an intermediate representation rather than directly lift-
ing to 3D from the raw RGB image. Images of humans can
vary due to factors such as illumination, clothing, and back-
ground clutter. Those effects do not necessarily correlate
with pose and shape, thus we investigate whether a simpli-
fication of the RGB image into a semantic segmentation of
body parts improves 3D inference. We also consider the
granularity of the body part segmentation as well as seg-
mentation quality, and find that: (i) a color-coded 12-body-
part segmentation contains sufficient information for pre-
dicting shape and pose, (ii) the use of such an intermediate
representation results in competitive performance and eas-
ier, more data-efficient training compared to similar meth-
ods that predict pose and shape parameters from raw RGB
images, (iii) segmentation quality is a strong predictor of fit
quality.

We also demonstrate that only a small fraction of the
training data needs to be paired with 3D annotations. We
make use of the recent UP-3D dataset [24] that contains
8000 training images in the wild along with 3D pose an-
notations. Larger 2D datasets exist, but UP-3D allows us to
perform a controlled study.

In summary, our contribution is twofold: first we in-
troduce NBF, which unites deep learning-based with tra-
ditional model-based methods taking advantage of both.
Second, we provide an in-depth analysis of the necessary

components to achieve good performance in hybrid archi-
tectures and provide insights for its real-world applicability
that we believe may hold for many related methods as well.

2. Related Work
Human pose estimation is a well-researched field and we

focus on 3D methods; for a recent extensive survey on the
field we refer to [48].
Model-based Methods. To estimate human pose and shape
from images, model-based [42] works use a parametric
body model or template. Early models were based on ge-
ometric primitives [34, 11, 39, 50, 54], while more recent
ones are estimated from 1000s of scans of real people,
and are typically parameterized by separate body pose and
shape components [5, 13, 28, 71, 41], with few exceptions,
e.g., [21]. Most model-based approaches fit a model to im-
age evidence through complex non-linear optimization, re-
quiring careful initialization to avoid poor local minima.

To reduce the complexity of the fitting procedure, the
output of 2D keypoint detection has been used as addi-
tional guidance. The progress in 2D pose estimation using
CNNs [65, 7, 15] has contributed significantly to the task of
3D pose estimation even in challenging in-the-wild scenar-
ios. For example, the 3D parameters of SMPL [28] can be
obtained with reasonable accuracy by fitting it to 2D key-
points [6, 24]. However, lifting to 3D from 2D information
alone is an ambiguous problem. Adversarial learning can
potentially identify plausible poses [18, 22]. By contrast,



the seminal works of [57, 53] address lifting by reasoning
about kinematic depth ambiguities. Recently, using monoc-
ular video and geometric reasoning, accurate and detailed
3D shape, including clothing is obtained [3, 2].
Learning-Based Models. Recent methods in this category
typically predict 3D keypoints or stick figures from a single
image using a CNN. High capacity models are trained on
standard 3D datasets [17, 49], which are limited in terms
of appearance variation, pose, backgrounds and occlusions.
Consequently, it is not clear – despite excellent performance
on standard benchmarks – how methods [59, 25, 37, 26]
generalize to in-the-wild images. To add variation, some
methods resort to generating synthetic images [46, 64, 23]
but it is complex to approximate fully realistic images with
sufficient variance. Similar to model-based methods, learn-
ing approaches have benefited from the advent of robust 2D
pose methods – by matching 2D detections to a 3D pose
database [8, 66], by regressing pose from 2D joint distance
matrices [35], by exploiting pose and geometric priors for
lifting [69, 1, 51, 19, 32, 70, 47]; or simply by training a
feed forward network to directly predict 3D pose from 2D
joints [30]. Another way to exploit images with only 2D
data is by re-using the first layers of a 2D pose CNN for the
task of 3D pose estimation [60, 33, 31]. Pavlakos et al. [36]
take another approach by relying on weak 3D supervision
in form of a relative 3D ordering of joints, similar to the
previously proposed PoseBits [40].

Closer to ours are approaches that train using separate
2D and 3D losses [44, 67, 55]. However, since they do
not integrate a statistical body model in the network, limbs
and body proportions might be unnatural. Most importantly,
they only predict 3D stick figures as opposed to a full mesh.

Some works regress correspondences to a body model
which are then used to fit the model to depth data [43, 58].
Recently, correspondences to the SMPL body surface are
regressed from images directly [12] by leveraging dense
keypoint annotations; however, the approach can not re-
cover 3D human pose and shape. [63] fits SMPL to CNN
volumetric outputs as a post-process step. 3D model fit-
ting within a CNN have been proposed for faces [61]; faces
however, are not articulated like bodies which simplifies the
regression problem.

A few recent works (concurrent to ours) integrate the
SMPL [28] model within a network [62, 22, 38]. The ap-
proaches differ primarily in the proxy representation used to
lift to 3D: RGB images [22], images and 2D keypoints [62]
and 2D keypoints and silhouettes [38], and the kind of su-
pervision (3D vs 2D) used for training. In contrast to pre-
vious work, we analyze the importance of such components
for good performance. Kanazawa et al. [22] also integrate
a learned prior on the space of poses. We draw inspiration
from model-based and learning approaches in several as-
pects of our model design. Firstly, NBF addresses an impor-

tant limitation: it does not require an initialization for op-
timization because it incorporates a CNN based bottom-up
component. Furthermore, at test time, NBF predictions are
fast and do not require optimization. By integrating SMPL
directly into the CNN, we do not require multiple network
heads to backpropagate 2D and 3D losses. Lastly, we use
a semantic segmentation as proxy representation, which (1)
abstracts away irrelevant image information for 3D pose,
(2) is a richer semantic representation than keypoints or sil-
houettes, and (3) allows us to analyze the importance of part
granularity and placement for 3D prediction.

3. Method

Our goal is to fit a 3D mesh of a human to a single
static image (see Figure 2). This task involves multiple
steps and we want to apply 3D but also 2D losses due
to the strongly varying difficulty to obtain ground truth
data. Nevertheless, we aim to build a simple processing
pipeline with parts that can be optimized in isolation and
avoiding multiple network heads. This reduces the number
of hyperparameters and interactions, e.g., loss weights, and
allows us to consecutively train the model parts. There
are two main stages in the proposed architecture: in a
first stage, a body part segmentation is predicted from the
RGB image. The second stage takes this segmentation to
predict a low-dimensional parameterization of a body mesh.

3.1. Body Model

For our experiments we use the SMPL body model due
to its good trade-off between high anatomic flexibility and
realism. SMPL parameterizes a triangulated mesh with
N = 6890 vertices with pose parameters θ ∈ R72 and shape
parameters β ∈ R10 – optionally the translation parameters
γ ∈ R3 can be taken into account as well. Shape Bs(β)
and pose dependent deformations Bp(θ) are first applied
to a base template Tµ; then the mesh is posed by rotating
each body part around skeleton joints J(β) using a skinning
function W :

M(β,θ) =W (T (β,θ), J(β),θ,W), (1)

T (β,θ) = Tµ +Bs(β) +Bp(θ), (2)

where M(β,θ) is the SMPL function, and T (β,θ) outputs
an intermediate mesh in a T-pose after pose and shape de-
formations are applied. SMPL produces realistic results us-
ing relatively simple mathematical operations – most im-
portantly for us SMPL is fully differentiable with respect
to pose θ and shape β. All these operations, including the
ones to determine projected points of a posed and parame-
terized 3D body, are available in Tensorflow. We use them
to make the 3D body a part of our deep learning model.
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Figure 2: Summary of our proposed pipeline. We process the image with a standard semantic segmentation CNN into 12
semantic parts (see Sec. 4.2). An encoding CNN processes the semantic part probability maps to predict SMPL body model
parameters (see Sec. 3.2). We then use our SMPL implementation in Tensorflow to obtain a projection of the pose-defining
points to 2D. With these points, a loss on 2D vertex positions can be back propagated through the entire model (see Sec. 3.3).

3.2. Neural Body Fitting Parameterization

NBF predicts the parameters of the body model from a
colour-coded part segmentation map I ∈ R224×224×3 using
a CNN-based predictor parameterized by weights w. The
estimators for pose and shape are thus given by θ(w, I) and
β(w, I) respectively.

We integrate the SMPL model and a simple 2D projec-
tion layer into our CNN estimator, as described in Sec. 3.1.
This allows us to output a 3D mesh, 3D skeleton joint loca-
tions or 2D joints, depending on the kind of supervision we
want to apply for training while keeping the CNN mono-
lithic.

Mathematically, the function N3D(w, I) that maps from
semantic images to meshes is given by

N3D(w, I) = M(θ(w, I),β(w, I)) (3)
= W (T (β(w, I),θ(w, I),

J(β(w, I)),θ(w, I),W)), (4)

which is the SMPL Equation (1) parameterized by net-
work parameters w. NBF can also predict the 3D joints
NJ(w, I) = J(β(w, I), because they are a function of the
model parameters. Furthermore, using a projection opera-
tion π(·) we can project the 3D joints onto the image plane

N2D(w, I) = π(J(w, I)), (5)

where N2D(w, I) is the NBF function that outputs 2D joint
locations. All of these operations are differentiable and al-
low us to use gradient-based optimization to update model
parameters with a suitable loss function.

3.3. Loss Functions

We experiment with the following loss functions:
3D latent parameter loss: This is an L1 loss on the model
parameters θ and β. Given a paired dataset {Ii,θi,βi}Ni ,
the loss is given by:

Llat(w) =
N∑
i

|r(θ(w, Ii))−r(θi)|+|β(w, Ii)−βi|, (6)

where r are the vectorized rotation matrices of the 24 parts
of the body. Similar to [24, 38], we observed better perfor-
mance by imposing the loss on the rotation matrix represen-
tation of θ rather than on its ‘native’ axis angle encoding as
defined in SMPL. This requires us to project the predicted
matrices to the manifold of rotation matrices. We perform
this step using SVD to maintain differentiability.
3D joint loss: Given a paired dataset with skeleton annota-
tions {Ii,θi,J}Ni we compute the loss in terms of 3D joint
position differences as:

L3D(w) =

N∑
i

‖NJ(w, Ii)− Ji‖2 (7)

2D joint loss: If the dataset {Ii,J2D}Ni provides solely 2D
joint position ground truth, we define a similar loss in terms
of 2D distance and rely on error backpropagation through
the projection:

L2D(w) =

N∑
i

‖N2D(w, Ii)− J2D,i‖2 (8)



Joint 2D and 3D loss: To maximize the amounts of usable
training data, ideally multiple data sources can be combined
with a subset of the dataD3D providing 3D annotations and
another subset D3D providing 2D annotations. We can triv-
ially integrate all the data with different kinds of supervi-
sion by falling back to the relevant losses and setting them
to zero if not applicable.

L2D+3D(w,D) = L2D(w,D2D) + L3D(w,D3D) (9)

In our experiments, we analyze the performance of each
loss and their combinations. In particular, we evaluate how
much gain in 3D estimation accuracy can be obtained from
weak 2D annotations which are much cheaper to obtain than
accurate 3D annotations.

4. Results

4.1. Evaluation Settings

We used the following three datasets for evaluation: UP-
3D, [24], HumanEva-I [49] and Human3.6M[17]. We per-
form a detailed analysis of our approach on UP-3D and Hu-
man3.6M, and compare against state-of-the-art methods on
HumanEVA-I and Human3.6M.

UP-3D, is a challenging, in-the-wild dataset that draws
from existing pose datasets: LSP [20], LSP-extended [20],
MPII HumanPose [4], and FashionPose [10]. It augments
images from these datasets with rich 3D annotations in the
form of SMPL model parameters that fully capture shape
and pose, allowing us to derive 2D and 3D joint as well as
fine-grained segmentation annotations. The dataset consists
of training (5703 images), validation (1423 images) and test
(1389 images) sets. For our analysis, we use the training set
and provide results on the validation set.

The HumanEVA-I dataset is recorded in a controlled
environment with marker-based ground truth synchronized
with video. The dataset includes 3 subjects and 2 motion
sequences per subject. Human3.6M also consists of simi-
larly recorded data but covers more subjects, with 15 action
sequences per subject repeated over two trials. For our anal-
ysis on this dataset, we reserve subjects S1, S5, S6 and S7
for training, holding out subject S8 for validation. We com-
pare to the state of art on the test sequences S9 and S11.

4.2. Implementation Details

Data preparation: To train our model, we require im-
ages paired with 3D body model fits (i.e. SMPL parameters)
as well as pixelwise part labels. The UP-3D dataset pro-
vides such annotations, while Human3.6M does not. How-
ever, by applying MoSH [29] to the 3D MoCap marker data
provided by the latter we obtain the corresponding SMPL
parameters, which in turn allows us to generate part labels
by rendering an appropriately annotated SMPL mesh [24].

Scale ambiguity: The SMPL shape parameters encode
among other factors a person’s size. Additionally, both dis-
tance to the camera and focal length determine how large
a person appears in an image. To eliminate this ambiguity
during training, we constrain scale information to the shape
parameters by making the following assumptions: The cam-
era is always at the SMPL coordinate origin, the optical
axis always points in the same direction, and a person is
always at a fixed distance from the camera. We render the
ground truth SMPL fits and scale the training images to fit
the renderings (using the corresponding 2D joints). This
guarantees that the the only factor affecting person size in
the image are the SMPL shape parameters. At test-time, we
estimate person height and location in the image using 2D
DeeperCut keypoints [16], and center the person within a
512x512 crop such that they have a height of 440px, which
roughly corresponds to the setting seen during training.

Architecture: We use a two-stage approach: The first
stage receives the 512x512 input crop and produces a part
segmentation. We use a RefineNet [27] model (based on
ResNet-101 [14]). This part segmentation is color-coded,
resized to 224x224 and fed as an RGB image to the second
stage, itself composed of two parts: a regression network
(ResNet-50) that outputs the 226 SMPL parameters (shape
and pose), and a non-trainable set of layers that implement
the SMPL model and an image projection. Such layers can
produce a 3D mesh, 3D joints or 2D joints given the pre-
dicted pose and shape. Training both stages requires a total
of 18 (12+6) hours on a single Volta V100 GPU. More de-
tails are provided in the supplementary material as well as
in the code (to be released).

4.3. Analysis

Which Input Encoding? We investigate here what input
representation is effective for pose and shape prediction.
Full RGB images certainly contain more information than
for example silhouettes, part segmentations or 2D joints.
However, some information may not be relevant for 3D in-
ference, such as appearance, illumination or clothing, which
might make the network overfit to nuisances factors

To this end, we train a network on different image rep-
resentations and compare their performance on the UP-3D
and Human3.6M validation sets. We compare RGB im-
ages, color-coded part segmentations of varying granular-
ities, and color-coded joint heatmaps (see supplementary
material for examples). We generate both using the ground
truth SMPL annotations to establish an upper bound on per-
formance, and later consider the case where we do not have
access to such information at test time.

The results are reported in Table 1. We observe that
explicit part representations (part segmentations or joint
heatmaps) are more useful for 3D shape/pose estimation
compared to RGB images and plain silhouettes. The dif-



type of input UP H36M
RGB 98.5 48.9

Segmentation (1 part) 95.5 43.0
Segmentation (3 parts) 36.5 37.5
Segmentation (6 parts) 29.4 36.2
Segmentation (12 parts) 27.8 33.5
Segmentation (24 parts) 28.8 31.8

Joints (14) 28.8 33.4
Joints (24) 27.7 33.4

Table 1: Input Type vs. 3D error in millimeters

ference is especially pronounced on the UP-3D dataset,
which contains more visual variety than the images of Hu-
man3.6M, with an error drop from 98.5 mm to 27.8 mm
when using a 12 part segmentation. This demonstrates that
a 2D segmentation of the person into sufficient parts carries
a lot of information about 3D pose/shape, while also pro-
viding full spatial coverage of the person (compared to joint
heatmaps). Is it then worth learning separate mappings first
from image to part segmentation, and then from part seg-
mentation to 3D shape/pose? To answer this question we
first need to examine how 3D accuracy is affected by the
quality of real predicted part segmentations.

Which Input Quality? To determine the effect of seg-
mentation quality on the results, we train three different part
segmentation networks. Besides RefineNet, we also train
two variants of DeepLab [9], based on VGG-16 [52] and
ResNet-101 [14]. These networks result in IoU scores of
67.1, 57.0, and 53.2 respectively on the UP validation set.
Given these results, we then train four 3D prediction net-
works - one for each of the part segmentation networks, and
an additional one using the ground truth segmentations. We
report 3D accuracy on the validation set of UP3D for each
of the four 3D networks, diagonal numbers of Table 2. As
one would expect, the better the segmentation, the better
the 3D prediction accuracy. As can also be seen in Table 2,
better segmenters at test time always lead to improved 3D
accuracy, even when the 3D prediction networks are trained
with poorer segmenters. This is perhaps surprising, and it
indicates that mimicking the statistics of a particular seg-
mentation method at training time plays only a minor role
(for example a network trained with GT segmentations and
tested using RefineNet segmentations performs comparably
to a network that is trained using RefineNet segmentations
(83.3mm vs 82mm)). To further analyze the correlation be-
tween segmentation quality and 3D accuracy, in Figure 3 we
plot the relationship between F-1 score and 3D reconstruc-
tion error. Each dot represents one image, and the color its
respective difficulty – we use the distance to mean pose as
a proxy measure for difficulty. The plot clearly shows that
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Figure 3: Segmentation quality (F1-score) vs. fit quality
(3D joint error). The darkness indicates the difficulty of the
pose, i.e. the distance from the upright pose with arms by
the sides.

Val
Train VGG ResNet RefineNet GT

VGG 107.2 119.9 135.5 140.7

ResNet 97.1 96.3 112.2 115.6

RefineNet 89.6 89.9 82.0 83.3

GT 62.3 60.5 35.7 27.8

Table 2: Effect of segmentation quality on the quality of the
3D fit prediction modules (errjoints3D)

the higher the F-1 score, the lower the 3D joint error.
Which Types of Supervision? We now examine differ-

ent combinations of loss terms. The losses we consider are
Llat (on the latent parameters), L3D (on 3D joint/vertex lo-
cations), L2D (on the projected joint/vertex locations). We
compare performance using three different error measures:
(i) errjoints3D, the Euclidean distance between ground
truth and predicted SMPL joints (in mm). (ii) PCKh [4],
the percentage of correct keypoints with the error thresh-
old being 50% of head size, which we measure on a per-
example basis. (iii) errquat, quaternion distance error of
the predicted joint rotations (in radians).

Given sufficient data - the full 3D-annotated UTP train-
ing set with mirrored examples (11406) - only applying a
loss on the model parameters yields reasonable results, and
in this setting, additional loss terms don’t provide benefits.
When only training with L3D, we obtain similar results in
terms of errjoints3D, however, interestingly errquat is sig-
nificantly higher. This indicates that predictions produce
accurate 3D joints positions in space, but the limb orienta-
tions are incorrect. This further demonstrates that methods
trained to produce only 3D keypoints do not capture orien-



Loss errjoints3D PCKh errquat

Llat 83.7 93.1 0.278
Llat + L3D 82.3 93.4 0.280
Llat + L2D 83.1 93.5 0.278
Llat + L3D + L2D 82.0 93.5 0.279
L3D 83.7 93.5 1.962
L2D 198.0 94.0 1.971

Table 3: Loss ablation study. Results in 2D and 3D error
metrics (joints3D: Euclidean 3D distance, mesh: average
vertex to vertex distance, quat: average body part rotation
error in radians).

Error
Ann.perc. 100 50 20 10 5 2 1 0

errjoints3D 83.1 82.8 82.8 83.6 84.5 88.1 93.9 198
errquat 0.28 0.28 0.27 0.28 0.29 0.30 0.33 1.97

Table 4: Effect of 3D labeled data. We show the 3D as well
as the estimated body part rotation error for varying ratios
of data with 3D labels. For all of the data, we assume that
2D pose labels are available. Both errors saturate at 20% of
3D labeled training examples.

tation, which is needed for many applications.
We also observe that only training with the 2D repro-

jection loss (perhaps unsurprisingly) results in poor perfor-
mance in terms of 3D error, showing that some amount of
3D annotations are necessary to overcome the ambiguity in-
herent to 2D keypoints as a source of supervision for 3D.

Due to the SMPL layers, we can supervise learning with
any number of joints/mesh vertices. We thus experimented
with the 91 landmarks used by [24] for their fitting method
but find that the 24 SMPL joints are sufficient in this setting.

How Much 3D Supervision Do We Need? The use of
these additional loss terms also allows us to leverage data
for which no 3D annotations are available. With the follow-
ing set of experiments, we attempt to answer two questions:
(i) Given a small amount of 3D-annotated data, does ex-
tra 2D-annotated data help?, (ii) What amount of 3D data
is necessary? To this end we train multiple networks, each
time progressively disabling the 3D latent loss and replacing
it with the 2D loss for more training examples. The results
are depicted in Table 4. We find that performance barely
degrades as long as we have a small amount of 3D anno-
tations. In contrast, using small amounts of 3D data and
no extra data with 2D annotations yields poor performance.
This is an important finding since obtaining 3D annotations
is difficult compared to simple 2D keypoint annotations.

Qualitative Results A selection of qualitative results from

Method Mean Median
Ramakrishna et al. [45] 168.4 145.9
Zhou et al. [68] 110.0 98.9
SMPLify [6] 79.9 61.9
Random Forests [24] 93.5 77.6
SMPLify (Dense) [24] 74.5 59.6
Ours 64.0 49.4

Table 5: HumanEva-I results. 3D joint errors in mm.

Method Mean Median
Akhter & Black [1] 181.1 158.1
Ramakrishna et al. [45] 157.3 136.8
Zhou et al. [68] 106.7 90.0
SMPLify [6] 82.3 69.3
SMPLify (dense) [24] 80.7 70.0
SelfSup [62] 98.4 -
Pavlakos et al. [38] 75.9 -
HMR (H36M-trained)[22] 77.6 72.1
HMR [22] 56.8 -
Ours 59.9 52.3

Table 6: Human 3.6M. 3D joint errors in mm.

the UP-3D dataset can be found in Figure 4. We show ex-
amples from the four different error quartiles. Fits from the
first three quartiles still reproduce the body pose somewhat
faithfully, and only in the last row and percentile, problems
become clearly visible. We show more failure modes in the
supplementary material.

4.4. Comparison to State-of-the-Art

Here we compare to the state of the art on HumanEva-I
(Table 5) and Human3.6M (Table 6). We perform a per-
frame rigid alignment of the 3D estimates to the ground
truth using Procrustes Analysis and report results in terms
of reconstruction error, i.e. the mean per joint position error
after alignment (given in mm). The model we use here is
trained on Human3.6M data.

We compare favourably to similar methods, but these are
not strictly comparable since they train on different datasets.
Pavlakos et al. [38] do not use any data from Human3.6M,
whereas HMR [22] does, along with several other datasets.
We retrained the latter with the original code only using Hu-
man3.6M data for a more direct comparison to ours (HMR
(H36M-trained) in Table 6). Given Table 1, we hypothesize
that their approach requires more training data for good per-
formance because it uses RGB images as input.

5. Conclusion
In this paper, we make several principled steps towards

a full integration of parametric 3D human pose models into



Figure 4: Qualitative results by error quartile in terms of errjoints3D. The rows show representative examples from different
error quartiles, top to bottom: 0-25%, 25-50%, 50-75%, 75-100%

deep CNN architectures. We analyze (1) how the 3D model
can be integrated into a deep neural network, (2) how loss
functions can be combined and (3) how a training can be set
up that works efficiently with scarce 3D data.

In contrast to existing methods we use a region-based
2D representation, namely a 12-body-part segmentation, as
an intermediate step prior to the mapping to 3D shape and
pose. This segmentation provides full spatial coverage of
a person as opposed to the commonly used sparse set of
keypoints, while also retaining enough information about
the arrangement of parts to allow for effective lifting to 3D.

We used a stack of CNN layers on top of a segmentation
model to predict an encoding in the space of 3D model pa-
rameters, followed by a Tensorflow implementation of the
3D model and a projection to the image plane. This full
integration allows us to finely tune the loss functions and

enables end-to-end training. We found a loss that combines
2D as well as 3D information to work best. The flexible im-
plementation allowed us to experiment with the 3D losses
only for parts of the data, moving towards a weakly su-
pervised training scenario that avoids expensive 3D labeled
data. With 3D information for only 20% of our training
data, we could reach similar performance as with full 3D
annotations.

We believe that this encouraging result is an important
finding for the design of future datasets and the develop-
ment of 3D prediction methods that do not require expen-
sive 3D annotations for training. Future work will involve
extending this to more challenging settings involving mul-
tiple, possibly occluded, people.
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[61] A. Tewari, M. Zollhöfer, H. Kim, P. Garrido,
F. Bernard, P. Perez, and C. Theobalt. Mofa: Model-
based deep convolutional face autoencoder for unsu-
pervised monocular reconstruction. In The IEEE Inter-
national Conference on Computer Vision (ICCV), vol-
ume 2, 2017. 3

[62] H.-Y. Tung, H.-W. Tung, E. Yumer, and K. Fragki-
adaki. Self-supervised learning of motion capture. In
Advances in Neural Information Processing Systems,
pages 5242–5252, 2017. 1, 3, 7

[63] G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer,
I. Laptev, and C. Schmid. Bodynet: Volumetric in-
ference of 3d human body shapes. arXiv preprint
arXiv:1804.04875, 2018. 3

[64] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J.
Black, I. Laptev, and C. Schmid. Learning from Syn-
thetic Humans. In CVPR, 2017. 3

[65] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh.
Convolutional pose machines. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2016. 2

[66] H. Yasin, U. Iqbal, B. Krüger, A. Weber, and J. Gall.
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A. Further Qualitative Results

One of our findings is the high correlation between in-
put segmentation quality and output fit quality. We pro-
vide some additional qualitative examples that illustrate this
correlation. In Fig. 5, we present the four worst examples
from the validation set in terms of 3D joint reconstruction
error when we use our trained part segmentation network; in
Fig. 6, we present the worst examples when the network is
trained to predict body model parameters given the ground
truth segmentations. This does not correct all estimated 3D
bodies, but the remaining errors are noticeably less severe.

B. Training Details

We present examples of paired training examples and
ground truth in Fig 7.

Segmentation Network We train our own TensorFlow
implementation of a RefineNet [4] network (based on
ResNet-101) to predict the part segmentations. The images
are cropped to 512x512 pixels, and we train for 20 epochs
with a batch size of 5 using the Adam [3] optimizer. Learn-
ing rate and weight decay are set to 0.00002 and 0.0001
respectively, with a polynomial learning rate decay. Data
augmentation improved performance a lot, in particular hor-
izontal reflection (which requires re-mapping the labels for
left and right limbs), scale augmentation (0.9 - 1.1 of the
original size) as well as rotations (up to 45 degrees). For
training the segmentation network on UP-3D we used the
5703 training images. For Human3.6M we subsampled the
videos, only using every 10th frame from each video, which
results in about 32000 frames. Depending on the amount of
data, training the segmentation networks takes about 6-12
hours on a Volta V100 machine.

Fitting Network For the fitting network we repurpose a
ResNet-50 network pretrained on ImageNet to regress the
SMPL model parameters. We replace the final pooling layer
with a single fully-connected layer that outputs the 10 shape
and 216 pose parameters. We train this network for 75
epochs with a batch size of 5 using the Adam optimizer.
The learning rate is set to 0.00004 with polynomial decay
and we use a weight decay setting of 0.0001. We found that
an L1 loss on the SMPL parameters was a little better than
an L2 loss. We also experimented with robust losses (e.g.
Geman-McClure [2] and Tukey’s biweight loss [1]) but did
not observe benefits. Training this network takes about 1.5
hours for the UP-3D dataset and six hours for Human3.6M.

Data Augmentation At test-time we cannot guarantee
that the person will be perfectly centered in the input crop,
which can lead to degraded performance. We found it thus

critical to train both the segmentation network and the fit-
ting network with strong data augmentation, especially by
introducing random jitter and scaling. For the fitting net-
work, such augmentation has to take place prior to training
since it affects the SMPL parameters. We also mirror the
data, but this requires careful mirroring of both the part la-
bels as well as the SMPL parameters. This involves remap-
ping the parts, as well as inverting the part rotations.
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Figure 5: Worst examples from the validation set in terms of 3D error given imperfect segmentations.

Figure 6: Worst examples from the validation set in terms of 3D error given perfect segmentations.

Figure 7: Example training images annotations illustrating different types and granularities.


